Reconstitution of hyperacetylated, DNase I-sensitive chromatin characterized by high conformational flexibility of nucleosomal DNA.
نویسندگان
چکیده
Increased acetylation at specific N-terminal lysines of core histones is a hallmark of active chromatin in vivo, yet the structural consequences of acetylation leading to increased gene activity are only poorly defined. We employed a new approach to characterize the effects of histone acetylation: A Drosophila embryo-derived cell-free system for chromatin reconstitution under physiological conditions was programmed with exogenous histones to assemble hyperacetylated or matching control chromatin of high complexity. Hyperacetylated chromatin resembled unmodified chromatin at similar nucleosome density with respect to its sensitivity toward microccal nuclease, its nucleosomal repeat length, and the incorporation of the linker histone H1. In contrast, DNA in acetylated chromatin showed an increased sensitivity toward DNase I and a surprisingly high degree of conformational flexibility upon temperature shift pointing to profound alterations of DNA/histone interactions. This successful reconstitution of accessible and flexible chromatin outside of a nucleus paves the way for a thorough analysis of the causal relationship between histone acetylation and gene function.
منابع مشابه
Isolation of a subclass of nuclear proteins responsible for conferring a DNase I-sensitive structure on globin chromatin.
The globin gene is preferentially sensitive to digestion by DNase I in erythrocyte chromatin but not in brain, fibroblast, or oviduct chromatin. Elution of the erythrocyte chromatin with 0.35 M NaCl leads to no detectable change in the gross structure of individual nucleosomes; however, in this depleted chromatin the globin gene is no longer preferentially sensitive to DNase I. Reconstitution o...
متن کاملStable co-occupancy of transcription factors and histones at the HIV-1 enhancer.
To investigate mechanisms yielding DNase I-hypersensitive sites (DHSs) at gene regulatory regions, we have initiated a biochemical analysis of transcription factor binding and nucleosome remodeling with a region of the human immunodeficiency virus 1 (HIV-1) 5' long terminal repeat (LTR) that harbors constitutive DHSs in vivo. In vitro reconstitution of an HIV-1 5' LTR fragment into nucleosome c...
متن کاملApoptotic nuclear morphological change without DNA fragmentation
Apoptosis is characterized morphologically by condensation and fragmentation of nuclei and cells and biochemically by fragmentation of chromosomal DNA into nucleosomal units [1]. CAD, also known as CPAN or DFF-40, is a DNase that can be activated by caspases [2] [3] [4] [5] [6]. CAD is complexed with its inhibitor, ICAD, in growing, non-apoptotic cells [2] [7]. Caspases that are activated by ap...
متن کاملNucleosome structural transition during chromatin unfolding is caused by conformational changes in nucleosomal DNA.
We have recently reported that certain core histone-DNA contacts are altered in nucleosomes during chromatin unfolding (Usachenko, S. I., Gavin I. M., and Bavykin, S. G. (1996) J. Biol. Chem. 271, 3831-3836). In this work, we demonstrate that these alterations are caused by a conformational change in the nucleosomal DNA. Using zero-length protein-DNA cross-linking, we have mapped histone-DNA co...
متن کاملHistone deacetylation by Sir2 generates a transcriptionally repressed nucleoprotein complex.
Sir2 is an NAD-dependent histone deacetylase required for transcriptional silencing. To study the mechanism of Sir2 function, we examined the biochemical properties of purified recombinant Drosophila Sir2 (dSir2). First, we performed histone deacetylation assays and found that dSir2 deacetylates a broad range of acetylated lysine residues. We then carried out in vitro transcription experiments ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 95 4 شماره
صفحات -
تاریخ انتشار 1998